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Abstract

Considered is interpolation of families of functions depending on a parameter
by families of interpolation polynomials. Inner and outer inclusions for the
interpolating families are constructed in terms of interval and extended inter-
val arithmetic. Some interpolation polynomials involving dircted intervals are
studied.

1 Introduction

Throughout the paper we consider interpolation involving algebraic polynomi-
als. However, the results obtained can be easily generalised to comprise inter-
polation using other classes of interpolating functions, such as trigonometric
polynomials, exponential functions etc.

Let pn(x, y; ξ) be the interpolation polynomial of degree n − 1 taking at a
given mesh x = {xi}ni=1 ∈ X ⊆ R, x1 < x2 < ... < xn, prescribed values
y = {yi}ni=1. Using the Lagrange form we have

pn(x, y; ξ) =

n∑
i=1

li(x)yi, li(ξ) =

n∏
j=1, j 6=i

((ξ − xj)/(xi − xj)). (1)

Assume now that we are given intervals Yi = [y−i , y
+
i ] ∈ I(R) for the values

yi. By Y = {Yi}ni=1 we mean yi ∈ Yi, i = 1, ..., n. Consider the family of
interpolation polynomials taking at xi all possible values in the intervals Yi,
i = 1, ..., n:

pn(x, Y ; ξ) = {pn(x, y; ξ) | y ∈ Y } = {
n∑
i=1

li(ξ)yi | yi ∈ Yi, i = 1, ..., n}, (2)
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where li(ξ) are defined in (1). This family has been probably first investigated in
[4]. For a fixed ξ the set pn(x, Y ; ξ) is an interval. We shall denote the boundary
functions of (2) by p−n , p+

n , i. e. pn(x, Y ; ξ) = [p−n (x, Y ; ξ), p+
n (x, Y ; ξ)]. It has

been noticed [7], [8], [10] that (2) can be presented concisely by means of the
interval-arithmetic operations for addition and for multiplication by real number
defined for [a−, a+], [b−, b+] ∈ I(R) by [1], [20], [21], [26]:

[a−, a+] + [b−, b+] = [a− + b−, a+ + b+], (3)

α[a−, a+] = {[αa−sign(α), αasign(α)], α 6= 0; 0, α = 0}, (4)

where for α 6= 0, sign(α) = {−, α < 0; +, α > 0}. Using the interval arithmetic
operations (3), (4) we can represent the set {

∑n
i=1 αiyi | yi ∈ Yi} as

{
n∑
i=1

αiyi | yi ∈ Yi, i = 1, ..., n} =

n∑
i=1

αiYi. (5)

Fixing ξ in (2) and applying relation (5) we obtain

pn(x, Y ; ξ) =

n∑
i=1

li(ξ)Yi. (6)

Formula (6) ofers a simple and remarkable example of a nontrivial applica-
tion of interval arithmetic. Indeed, without interval arithmetic, the interval
interpolation polynomial (6) can not be represented in a concise form. Using
conventional techniques (see [4]) the interval-valued polynomial (6) can be de-
scribed by its boundary functions which are piece-wise polynomial functions.
More precisely, they are polynomials in each subinterval [xk, xk+1] but gener-
ally in every two subintervals they are pieces of two different polynomials. The
upper bound p+

n (x, Y ) of (6) in the interval [xk, xk+1] is (piece of) the interpola-
tion polynomial p+

n,k passing through (determined by) the points (xk−2j , y
+
k−2j),

(xk+2j+1, y
+
k+2j+1), (xk−2j−1, y

−
k−2j−1), (xk+2j , y

−
k+2j), j = 0, 1, 2, ..., where all

mesh points are involved. The lower bound p−n (x, Y ) in the interval [xk, xk+1]
is (piece of) the interpolation polynomial p−n,k passing through the alternative
end-points of the vertical segments (xi, Yi)

n
i=1, that is the points having re-

versed ±-signs as upper indeces for their y-components, namely (xk−2j , y
−
k−2j),

(xk+2j+1, y
−
k+2j+1), (xk−2j−1, y

+
k−2j−1), (xk+2j , y

+
k+2j), j = 0, 1, 2, .... However,

this is valid only for the interval [xk, xk+1]. In another interval [xl, xl+1] the
boundary functions are (pieces of) other interpolation polynomials p−n,l, p

+
n,l in

general. Symbolically, without interval arithmetic we should write

pn(x, Y ; ξ) = [p−n,k(ξ), p+
n,k(ξ)], ξ ∈ [xk, xk+1], (7)

where p−n,k, p
+
n,k are defined above. On the real line R we have

pn(x, Y ; ξ) =

n+1⋃
0

[p−n,k(ξ), p+
n,k(ξ)],
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wherein x0 = −∞, xn+1 = ∞. According to (6) the set of all polynomials of
(n− 1)-st degree lying between p− and p+ coincides with the set (2)!

Note that the simple interval arithmetic expression (6) presents a complex
interval function which boundaries are piece-wise polynomial functions. The
”secret” is hidden in the fact that (6) actually comprises as many ”normal”
expressions as is the number of subintervals generated by the mesh points. In-
deed, the signs of the Lagrangian coefficiens li(ξ), i = 1, ..., n, have particular
values in each subinterval. This, as seen from (6) and (4), leads to particular
expressions for the boundary functions in each subinterval.

Let us point out that the family of interpolation polynimials defined by (2)
arbitrarily intersects the vertical segments (xi, Yi), i = 1, ..., n. It is practically
important to study families which intersect (some of the) vertical segments in
certain interdependent way. A practical situation which diserves interest is the
situation when we know that (some of) the vertical segments are traced by
the family monotonically in certain direction. To give an example consider a
family of polynomials constructed by means of the above mentioned polynomials
p−n,k, p

+
n,k as follows

{pn,k(t) = (1− t)p−n,k + tp+
n,k | t ∈ [0, 1]}. (8)

The intersection points of this family with the vertical segments trace the
vertical segments in an interdependent way. The vertical segments (xk, Yk),
(xk+1, Yk+1) are traced in ”positive direction”, the next neighbouring segments
(xk−1, Yk−1), (xk+2, Yk+2) are traced in ”negative direction” and so on alterna-
tively. The family (8) can be presented by a simple interval-arithmetic expres-
sion using directed intervals. However, we can not give analogous expression
based on standard interval arithmetic.

Our approach will allow us to consider the alternative classical setting when
interpolation is related not just to discrete numerical values but to a function f
belonging to a given class. If f is sufficiently smooth, then for the distance be-
tween y(t) = f(t; ·) and the corresponding interpolation polynomial pn(x, y(t))
we have

|f(t; ξ)− pn(x, y(t); ξ)| = (1/n!)|∂f (n)(t; ξ0)/∂ξn|
n∏
i=1

|ξ − xi|, (9)

where ξ0 belongs to the interval comprising the points ξ, x1, x2, ..., xn, symboli-
cally ξ0 ∈ [ξ ∨x1 ∨x2 ∨ ...∨xn] (see e. g. [24], [2]). We are interested in similar
estimates in the situation when intervals are known for the values f(xi) (see
[13] and [2] for a similar setting). In what follows we shall consider functions
depending on one real-valued parameter.
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2 Interpolation of families of functions depend-
ing on parameter

Let f(t; ξ) be a real function defined on T ∗
⊗
X∗ ⊆ R2 which is continuous on

t ∈ T ∗ = [t∗1, t
∗
2] ∈ I(R). For every fixed t ∈ T ∗, f(t; ·) is a function defined on

X∗, which we shall sometimes denote by y(t) = f(t; ·). Denote the family of all
y(t) for t ∈ T = [t−, t+] ⊆ T ∗ by

y(T ) = f(T ; ·) = {f(t; ·) | t ∈ T}. (10)

For every ξ ∈ X∗ we have f(T ; ξ) ∈ I(R) so that (10) is an interval-valued
function on X∗.

Fix T ∈ I(R), T ⊆ T ∗, and denote by Xf,T the set of all ξ ∈ X, such that
f(t; ξ) is monotone w.r.t. t on T . If f is differentiable w.r.t. t, then for any
fixed ξ ∈ Xf,T the value of ∂f(t; ξ)/∂t does not change sign whenever t traces
T . However, this sign may be different for two ξ1, ξ2 ∈ Xf,T , ξ1 6= ξ2.

Let y(t) ∈ y(T ) and let pn(x, y(t); ξ) be the interpolation polynomial to y(t)
of degree n − 1 along a given mesh x = {xi}ni=1 ∈ X∗, x1 < x2 < ... < xn.
Denote yi(t) = f(t;xi), i = 1, ..., n. Using the Lagrange form (1) we have

pn(x, y(t); ξ) =

n∑
i=1

li(ξ)yi(t), li(ξ) =

n∏
j=1, j 6=i

((ξ − xj)/(xi − xj)). (11)

Denote the range of f(t;xi) over T by yi(T ) = f(T ;xi) = {f(t;xi) | t ∈ T}.
Assume that the family of interpolation polynomials (6) has been generated by
the values yi(T ) of the interval-valued function (10) at the mesh points xi and
consider the distance between both interval-valued functions at points different
from the mesh points x. Note that pn(x, Y ; ·) with Y = {yi(T )}ni=1, as defined
by (2), (6), may include polynomials pn(x, y; ξ) =

∑n
i=1 li(ξ)yi, yi ∈ yi(T ), i =

1, ..., n, which do not interpolate any individual function f(t; ·) from the family
{f(t; ·) | t ∈ T} unless all yi(T ) are degenerate (point-wise) intervals (we have
y 6= y(t) = f(t;x), in general). Therefore for the distance between the intervals
pn(x, Y ; ξ) and f(T ; ξ) at ξ 6= xi we can not use estimates in terms of smoothness
of f similar to (9) which are valid for the degenerate case T = t ∈ T ∗. The
following theorem deals with an example of a family y(T ) of the type (10), which
can be approximated in a certain interval by the interval valued polynomial (6)
and the distance between the family y(T ) and the interval polynomial can be
estimated in terms of the smoothness of y. As a measure for the distance
between two intervals A,B ∈ I(R) we take r(A,B) = r([a−, a+], [b−, b+]) =
max{|a− − b−|, |a+ − b+|}. We also make use of |A| = max{|a−|, |a+|}.

Theorem 1. Let f(t; ξ) be monotone increasing (decreasing) w.r.t. t ∈ T at
the mesh points xk−2j , xk+2j+1, j = 0, 1, 2, ... and monotone decreasing (increas-
ing) at xk−2j−1, xk+2j , j = 0, 1, 2, ... (all mesh points are involved in alternating
order starting from the points xk, xk+1 towards outside). Denote y(t) = f(t; ·)
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and the corresponding interpolation polynomial by pn(x, y(t); ξ). The following
properties take place:

i) pn(x, y(t); ξ) is monotone increasing (decreasing) in t for ξ ∈ [xk, xk+1];
ii) {pn(x, y(t); ξ) | t ∈ T} = pn(x, y(T ); ξ) =

∑n
i=1 li(ξ)f(T ;xi) for ξ ∈

[xk, xk+1];
iii) if f is n times differentiable w. r. t. ξ, then r(pn(x, y(T ); ξ), f(T ; ξ)) ≤

(1/n!)|∂f (n)(T ;X)/∂ξn|
∏n
i=1 |ξ − xi| for ξ ∈ [xk, xk+1], where X = [ξ ∨ x1 ∨

x2∨ ...∨xn], i. e. X is the smallest interval comprising the mesh points {xi}ni=1

and ξ.
Proof. From p(ξ) = pn(x, y(t); ξ) =

∑n
i=1 li(ξ)f(t;xi) we have

dpn(ξ)/dt =

n∑
i=1

li(ξ)∂f(t;xi)/∂t.

Let xk ≤ ξ ≤ xk+1. Then the polynomials of (n − 1)-st degree lk−2j(ξ),
lk+2j+1(ξ), j = 0, 1, 2, ..., are positive for ξ ∈ [xk, xk+1] whereas the polynomials
lk−2j(ξ), lk+2j+1(ξ), j = 0, 1, 2, ..., are negative in [xk, xk+1]. The assumption
of the theorem says that in [xk, xk+1], we have sign(∂f(t;xi)/∂t) = signli(ξ)
(= −signli(ξ)), i = 1, 2, ..., and hence dpn(ξ)/dt > 0 (< 0) for xk ≤ ξ ≤ xk+1,
that is case i) is proved.

To show ii) we have to observe that for ξ ∈ [xk, xk+1] the boundary functions
of the interval polynomial pn(x, Y ; ξ) and of the set {pn(x, y(t); ξ) | t ∈ T}
are polynomials of (n − 1)-degree which have same values at the mesh points
x = {xi}ni=1 and therefore coincide. However, note that the boundary functions
of these sets may not coincide outside the interval [xk, xk+1] where they are
pieces of other polynomials. Actually the boundary functions of the family
{pn(x, y(t); ξ) | t ∈ T} are p−n,k, (ξ), p

+
n,k(ξ)] for all ξ (see (7)).

To demonstrate iii) note that for t = t−, t+ we have

|f(t; ξ)− pn(x, y(t); ξ)| = (1/n!)|∂f (n)(t; ξ0)/∂ξn|
n∏
i=1

|ξ − xi|

≤ (1/n!)|∂f (n)(t;X)/∂ξn|
n∏
i=1

|ξ − xi|,

where ξ0 ∈ X = [ξ∨x1∨x2∨ ...∨xn]. Variation of this inequality for t ∈ T and
minding the monotonicity of f and pn implies the validity of iii) in [xk, xk+1].

Case iii) of Theorem 1 shows that for the special choice of the family f(T ; ξ)
described in the theorem, we are able to give an estimate for the distance be-
tween f(T, ξ) and the corresponding family of interpolating polynomial func-
tions {pn(x, f(t, ·)) | t ∈ T} in [xk, xk+1].

Theorem 1 ii) says that for the family y(t) = f(t; ·) considered in the theorem
the corresponding family of interval polynomials for ξ ∈ [xk, xk+1] is given by
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the simple interval-arithmetic expression

{pn(x, f(t;x); ξ) | t ∈ T} =

n∑
i=1

li(ξ)f(T ;xi).

However, the above relation is true only for ξ ∈ [xk, xk+1] and for the very
restrictive case considered in the theorem. In what follows we shall give similar
interval-arithmetic expressions under the more general assumption that f(t; ξ)
is monotone on t at each mesh point ξ = xi, without having to specify the
kind of monotonicity at xi as this was required in Theorem 1. To this end
we shall make use of extended interval arithmetic. The results can be equally
well formulated either by using normal intervals and nonstandard operations
[14]–[16], [18], or by using directed intervals [9], [11], [12], [19], [22]. In what
follows we shall make use of the latter form. To this end we next give some
basic concepts of the extended interval arithmetic using directed intervals.

3 An interpolation polynomial involving directed
intervals

A directed interval on R is a pair of reals [a−, a+], a−, a+ ∈ R. The set
of all directed intervals is denoted by D. Addition of directed intervals and
multiplication by a real number α ∈ R are defined as extensions of (3), that is:

[a−, a+] + [b−, b+] = [a− + b−, a+ + b+], [a−, a+], [b−, b+] ∈ D; (12)

α[a−, a+] = [αa−sign(α), αasign(α)], [a−, a+] ∈ D,α 6= 0; 0[a−, a+] = 0. (13)

Whenever appropriate, we shall denote directed intervals by boldface letters.
The basic operations (12), (13) involve a variety of derivative operations. We
define negation by −A = (−1)A = [−a+,−a−], resp. subtraction by A−B =
A+(−B) = [a−−b+, a+−b−]. To every A there exists additive inverse directed
interval −hA = [−a−,−a+], generating the operation hyperbolic subtraction
A −h B = A + (−hB) = [a− − b−, a+ − b+]. The conjugated (dual) directed
interval is defined by A− = −(−hA) = −h(−A) = [a+, a−]. Note that A−hB =
A−B−, which is 6= A−B in general. The direction of A is defined by τ(A) = +,
if a− ≤ a+ and τ(A) = −, otherwise. Directed intervals with positive direction
are called positively didected (not to be confused with positive!) or proper
intervals. Denote A+ = A. Then the directed interval Aτ(A) has a positive
direction for every A ∈ D and is called the proper part (or the prop) of A,
symbolically prop(A) = Aτ(A). The set of all proper intervals is equivalent
to the set of normal intervals I(R) and will be denoted by I(R). The set of
negatively directed (improper) intervals is denoted by I(R)−. The set D with
the operations (12), (13) satisfies all basic relations of a linear space exept
for the relation (α + β)C = αC + βC. This relation is replaced in D by
(α+ β)Csign(α+β) = αCsign(α) + βCsign(β).
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Since D is an extension of I(R) we shall assume that all relations in I(R) hold
true also in the set of proper intervals. For a proper interval A ∈ D we write A =
A = prop(A) ∈ I(R). In particular, inclusion between proper intervals is well
defined in the usual manner. We define inclusion between directed intervals via
inclusion between their corresponding props by setting A ⊆ B⇐⇒ prop(A) ⊆
prop(B) for any two A, B ∈ D such that B 6= A−. For two dual intervals
A, B = A− we may postulate that the negatively directed interval is included in
the positively directed one. If an expression involves both directed and normal
intervals, we shall consider the normal intervals as proper directed intervals.
If an interval expression involves at least one directed interval or at least one
(purely) directed operation or relation (such as conjugation) then this expression
will be considered as expression between directed intervals. In accordance to
these stipulations inclusion between normal and directed intervals also make
sense, namely, A ⊆ B ⇐⇒ A ⊆ prop(B), resp. A ⊆ B ⇐⇒ prop(A) ⊆ B.
For a ∈ R, A ∈ D, the inclusion a ∈ A is equivalent to a ∈ A or a ∈ propA.
We note that this definition of inclusion slightly differs from the one considered
by E. Kaucher [12]. The distance between two directed intervals is defined as
r(A,B) = |A −h B|, wherein |A| = max{|a−|, |a+|}. The width is defined by
ω(A) = ω(prop(A)) = |a+ − a−|.

We next give two propositions involving expressions for the sum of directed
intervals in terms of the set theoretic operations for (joint) union

⋃
and in-

tersection
⋂

. The union and the intersection of two equaly directed inter-
vals are directed intervals having the direction of the arguments involved and
their props are defined by prop(A

⋃
B) = prop(A)

⋃
prop(B). prop(A

⋂
B) =

prop(A)
⋂

prop(B), resp.
Proposition 1. i) For A, B ∈ D such that τ(A) 6= τ(B) we have

A + B =

{ ⋂
a∈A(a+ B), if ω(A) ≤ ω(B),⋂
b∈B(A + b), if ω(A) ≥ ω(B);

=
⋂
a∈A

(a+ B)
⋃ ⋂

b∈B

(A + b). (14)

ii) For A, B ∈ D such that τ(A) = τ(B)

A + B =
⋃
a∈A

(a+ B) =
⋃
b∈B

(A + b)

=
⋃
a∈A

(a+ B)
⋂ ⋃

b∈B

(A + b). (15)

We note that the union (14) involves an empty interval; the intersection (15)
involves two equally directed intervals. Formulae (14) and (15) express the
duality between the expressions for A + B in both cases, which is equivalent
to considering both expressions A + B, A + B−. To clarify this we present
Proposition 1, i) in the following eqiuvalent form
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Proposition 1′. For A, B ∈ I(R) we have

A + B− =

{ ⋂
b∈B(A + b), if A + B− ∈ I(R),⋂
a∈A(a+ B), if A− + B ∈ I(R)−.

The next proposition deals with a sum of n directed intervals and is a gen-
eralisation of Proposition 1. We first introduce some notations. Let A =
(A1,A2, ...,An) ∈ Dn be a vector of directed intervals. If all components Ai,
i = 1, ..., n, of A have same direction τ(Ai), then the direction of the vector A
is defined by τ(A) = τ(Ai). For a real vector a = (a1, a2, ..., an) ∈ Rn the inclu-
sion a ∈ A means that ai ∈ Ai, i = 1, ..., n. Denote further Σ(A) =

∑n
i=1 Ai,

and, in particular Σ(a) =
∑n
i=1 ai.

Let A′ = (Ai1 ,Ai2 , ...,Aik) ∈ Dk, A′′ = (Aik+1
,Aik+2

, ...,Ain) ∈ Dn−k

be two subsets of the interval vector A = (A1,A2, ...,An), such that A =
{A′,A′′}, 1 ≤ k ≤ n. The couple (A′,A′′) will be called a partition of A.

Proposition 2. Let A = (A1,A2, ...,An) ∈ Dn and let (A′,A′′) be a parti-
tion of A.

i) If all components of A are of same direction and (A′,A′′) is an arbitrary
partition of A, then

n∑
i=1

Ai = A1 + A2 + ...+ An = Σ(A′) + Σ(A′′)

=
⋃
a′∈A′

Σ(a′) + Σ(A′′) =
⋃

a′′∈A′′

Σ(A′) + Σ(a′′).

ii) If the components of A are of different directions and (A′,A′′) is a par-
tition of A, such that A′, resp. A′′, comprise intervals of same direction, then

n∑
i=1

Ai = A1 + A2 + ...+ An = Σ(A′) + Σ(A′′)

=

{ ⋂
Σ(a′)∈Σ(A′) Σ(a′) + Σ(A′′), if ω(Σ(A′)) ≤ ω(Σ(A′′))⋂
Σ(a′′)∈Σ(A′′) Σ(A′) + Σ(a′′), if ω(Σ(A′)) ≥ ω(Σ(A′′))

=

{ ⋂
a′∈A′ Σ(a′) + Σ(A′′), if ω(Σ(A′)) ≤ ω(Σ(A′′))⋂
a′′∈A′′ Σ(A′) + Σ(a′′), if ω(Σ(A′)) ≥ ω(Σ(A′′))

=
⋂
a′∈A′

(Σ(a′) + Σ(A′′))
⋃ ⋂

a′′∈A′′

(Σ(A′) + Σ(a′′)).

Let us consider now an interpolation polynomial of the form (6) involving
directed intervals. Let x = {xi}ni=1 ∈ X be a mesh and Y = (Y1,Y2, ...,Yn) ∈
Dn be a vector of directed intervals. Consider the expression

pn(x,Y; ξ) =

n∑
i=1

li(ξ)Yi. (16)
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For every fixed ξ the value of (16) is a directed interval, which can be computed
by means of (12), (13). At the mesh points the values of (16) are the given
directed intervals Yi.

We next give a set-theoretic interpretation for the value of (16) at arbitrary
point ξ. If all Yi, i = 1, ..., n, have same direction, then, according to Propo-
sition 2 i), the directed interval pn(x,Y; ξ) has same direction and proper part
prop(pn(x,Y; ξ)) = pn(x, Y ; ξ) as defined by (6). If Yi have different directions,
let us consider a partition (Y′,Y′′) of Y, such that Y′, resp. Y′′, consist of
equally directed intervals and τ(Y′) 6= τ(Y′′). To be more specific we shall
assume w. l. g. that τ(Y′) = −, τ(Y′′) = + and Y′ = (Yi1 ,Yi2 , ...,Yik) ∈ Dk,
Y′′ = (Yik+1

,Yik+2
, ...,Yin) ∈ Dn−k for some k, 1 ≤ k ≤ n. We shall further

denote by y′ ∈ Rk, y′′ ∈ Rn−k to real vectors, such that y′ ∈ Y′, resp. y′′ ∈ Y′′

(we write below y′ ∈ Y ′, resp. y′′ ∈ Y ′′, which is the same). Using Proposition
2 ii) we obtain

pn(x,Y; ξ) =

n∑
i=1

li(ξ)Yi =

k∑
j=1

lij (ξ)Yij +

n∑
j=k+1

lij (ξ)Yij

=
⋂
y′∈Y ′

(

k∑
j=1

lij (ξ)yij +

n∑
j=k+1

lij (ξ)Yij )

⋃ ⋂
y′′∈Y ′′

(

k∑
j=1

lij (ξ)Yij +

n∑
j=k+1

lij (ξ)yij ).

The first intersection
⋂
y′∈Y ′(

∑k
j=1 lij (ξ)yij +

∑n
j=k+1 lij (ξ)Yij ) in the above

expression involves only positively directed (proper) intervals, whereas the sec-

ond intersection
⋂
y′′∈Y ′′(

∑k
j=1 lij (ξ)Yij +

∑n
j=k+1 lij (ξ)yij ) involves only neg-

atively directed (improper) intervals. One of the intersections is empty unless
both intersections produce as results same real values, that is degenerate inter-
vals. Namely, from Proposition 2 ii), if ω(

∑k
j=1 lij (ξ)Yij )< ω(

∑n
j=k+1 lij (ξ)Yij ),

then the second intersection is empty, if the oposite inequality holds, then the
first intersection is empty, if an equality takes place, then both intersections
have equal real values. This shows that the boundary functions of (16) are
piece-wise polynomial functions.

Polynomials of the form (16) find application in the computation of Lk-
compatible systems of interval segments as introduced in [17].

4 Interpolation of parametric families using di-
rected ranges

Let f(t) be continuous and monotone function on T = [t−, t+] ∈ I(R), which
will be denoted by f ∈ CM(T ). The directed interval [f(t−), f(t+)] is called the
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directed range of f and will be denoted by f [T ] or f [T ]. Clearly, the directed
range f [T ] comprises information about: i) the range f(t) and ii) the kind of
monotonicity of f on T (nondecreasing/nonincreasing). We give some simple
rules for computing with ranges and directed ranges of monotone functions (see
also [25]). We denote for brevity τ(f [T ]) = τf .

Rule 1. If f, g ∈ CM(T ), then f [T ] + g[T ] ⊆ (f + g)(T ) ⊆ f(T ) + g(T ).
For the width of f(T ) + g(T ) we have ω1 = ω(f [T ] + g[T ]) ≤ ω((f + g)(T )) ≤
ω(f(T ) + g(T )) = ω2. The upper bound ω((f + g)(T )) can be improved by
ω((f + g)(T )) ≤ (ω1 + ω2)/2.

Rule 2 [18]. If, in addition to the assumption of Rule 1: f, g ∈ CM(T ), we
assume h = f + g ∈ CM(T ), then h[T ] = (f + g)[T ] = f [T ] + g[T ].

Rule 3 [18]. If f is monotone on T ∈ I(R) and α ∈ R, then for h = αf we
have h[T ] = αf [T ]sign(α).

Rules 1 – 3 imply the following
Rule 4. If: i) fi ∈ CM(T ), i = 1, ..., n, and ii) αi ∈ R, i = 1, ..., n, then

n∑
i=1

αifi[T ]sign(αi) ⊆ (

n∑
i=1

αifi)(T ) ⊆
n∑
i=1

αifi(T ). (17)

Rule 5. If, in Rule 4 in addition to i) – ii) we assume: iii) h =
∑n
i=1 αifi ∈

CM(T ), then

h[T ] = (

n∑
i=1

αifi)[T ] =

n∑
i=1

αifi[T ]sign(αi). (18)

Remarks. 1. Note that Rule 2 does not presume monotonicity of f +g and that
f [T ] + g[T ] gives substantially inner bounds for (f + g)(T ) if f, g are differently
monotone. For equally monotone functions f, g the sum is also monotone and we
can apply Rule 1. However, Rule 2 is valid also for equally monotone functions,
in this case prop(f [T ]+g[T ]) = f(T )+g(T ). Rule 2 can be also expressed in one
of the following way: i) If f, g ∈ CM(T ), then (f + g)(T ) lies between (w. r. t.
⊆) f [T ]+g[T ] and f [T ]+g[T ]τfτg ; ii) f(T )+g(T )τfτg ≤ (f+g)(T ) ≤ f(T )+g(T ).
2. In Rule 3 the lower index sign(αi) changes the direction of the directed range
f[T] according to the sign of αi. Note that the multiplication by real number
does not change the direction of the directed interval. 3. Rules 1 and 3 obtain
a simple form for linear functions f, g, resp. fi, since then the sums f + g,
resp.

∑
fi are also linear and therefore monotone. 4. The above rules can be

successfully incorporated in an algorithm which automatically finds ranges of
functions and their derivatives, such as the one reported in [3], and an extended
interval differentiation arithmetic can be developed in the sense of [23].

We next apply the arithmetic for directed intervals to interval-valued func-
tions corresponding to parametric families of functions. It is interesting to note
that interval-valued functions generated by parametric families have been con-
sidered in an early paper on interval arithmetic [26].
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Assume that f(t; ξ) is continuous on T ∗
⊗
X∗ and that for every ξ belonging

to some nonempty set Xf,T ⊆ X∗, f(t; ξ) ∈ CM(T ), T = [t−, t+] ∈ I(R), T ⊆
T ∗. In addition to the interval-valued function f(T ; ·) = {f(t; ·) | t ∈ T} defined
on X∗ we can consider a mapping f [T ; ·] : Xf,T −→ D defined for ξ ∈ Xf,T by
f [T ; ξ] = [f(t−; ξ), f(t+; ξ)], which is the directed range of f(t; ξ) over T .

Let xi ∈ Xf,T , i = 1, ..., n, x1 < x2 < ...xn, that is the functions f(t;xi), i =
1, ..., n, are monotone on T . Then the directed ranges f [T ;xi] are defined by
f [T ;xi] = [f(t−;xi), f(t+;xi)]. Each f(t; ·) generates an interpolation polyno-
mial pn passing through the points (x, f(t;x)) = (xi, f(t;xi))

n
i=1:

pn(x, f(t;x); ξ) =

n∑
i=1

li(ξ)f(t;xi). (19)

Theorem 2. Assume that the function f(t; ξ) is continuous on T ∗
⊗
X∗ and the

functions f(t;xi), i = 1, ..., n, are monotone on T ∈ T ∗. Then: i) for every
ξinR

n∑
i=1

li(ξ)f [T ;xi]sign(li(ξ)) ⊆ pn(x, f(T ;x); ξ) ⊆
n∑
i=1

li(ξ)f(T ;xi). (20)

ii) if (19) is monotone on T at ξ ∈ R, then pn(x, f(T ;x); ξ) reaches its lower
bound in (20, i. e.

pn(x, f(T ;x); ξ) =

n∑
i=1

li(ξ)f [T ;xi]sign(li(ξ)) (21)

and, if f is n times differentiable w. r. t. ξ, then r(pn(x, y(T ); ξ), f(T ; ξ)) ≤
(1/n!)|∂f (n)(T ;X)/∂ξn|

∏n
i=1 |ξ − xi| for ξ ∈ [xk, xk+1], where X is an interval

comprising the mesh points {xi}ni=1 and ξ.
Proof. The proof follows by fixing ξ and applying Rules 4 and 5. Equality

(21) is obvious from the more detailed form

pn(x, f [T ;x]; ξ) = [pn(x, f(t−;x); ξ), pn(x, f(t+;x); ξ)]

=

n∑
i=1

li(ξ)f [T ;xi]sign(li(ξ)).

An open problem is to find estimates for the interpolation family in the situation
when the family f is monotone at some of the knotes xi (and not at all of them).
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